71 research outputs found

    Reduced resting state functional connectivity in the hippocampus-midbrain-striatum network of schizophrenia patients

    Get PDF
    Contemporary preclinical models suggest that abnormal functioning of a brain network consisting of the hippocampus, midbrain and striatum plays a critical role in the pathophysiology of schizophrenia. Previous neuroimaging studies examined individual aspects of this model in schizophrenia patients and individuals at clinical high risk for psychosis. However, this exact preclinical brain network has not been translated to human neuroimaging studies with schizophrenia patients and therefore it is currently unknown how functioning of this network is altered in patients. Here we investigated resting state functional connectivity in the hippocampus-midbrain-striatum network of schizophrenia patients, using functional Magnetic Resonance Imaging. Based on preclinical models, a network of functionally validated brain regions comprising the anterior subiculum (SUB), limbic striatum (LS), ventral tegmental area (VTA) and associative striatum (AS) was examined in 47 schizophrenia patients and 51 healthy controls. Schizophrenia patients demonstrated significantly lower functional connectivity in this hippocampus-midbrain-striatum network compared with healthy controls (p = 0.036). Particular reductions in connectivity were found between the SUB and LS (0.002 +/- 0.315 and 0.116 +/- 0.224, p = 0.040) and between the VTA and AS (0.230 +/- 0.268 and 0.356 +/- 0.285, p = 0.026). In patients, functional connectivity was not significantly associated with positive, negative or general symptom scores. Reduced connectivity is consistent with the concept of functional brain dysconnectivity as a key feature of the disorder. Our results support the notion that functioning of the hippocampus-midbrain-striatum network is significantly altered in the pathophysiology of schizophrenia

    Association of Hippocampal Glutamate Levels With Adverse Outcomes in Individuals at Clinical High Risk for Psychosis

    Get PDF
    Importance: Preclinical and human data suggest that hippocampal dysfunction plays a critical role in the onset of psychosis. Neural hyperactivity in the hippocampus is thought to drive an increase in subcortical dopamine function through glutamatergic projections to the striatum. Objective: To examine the association between hippocampal glutamate levels in individuals at clinical high risk for psychosis and their subsequent clinical outcomes. Design, Setting, and Participants: This cross-sectional study of 86 individuals at clinical high risk for psychosis and 30 healthy control individuals, with a mean follow-up of 18.5 months, was conducted between November 1, 2011, and November 1, 2017, at early detection services in London and Cambridge, United Kingdom. Main Outcomes and Measures: Concentrations of glutamate and other metabolites were measured in the left hippocampus using 3-T proton magnetic resonance spectroscopy at the first clinical presentation. At follow-up, clinical outcomes were assessed in terms of transition or nontransition to psychosis using the Comprehensive Assessment of the At-Risk Mental State criteria and the level of overall functioning using the Global Assessment of Function scale. Results: Of 116 total participants, 86 were at clinical high risk for psychosis (50 [58%] male; mean [SD] age, 22.4 [3.5] years) and 30 were healthy controls (14 [47%] male; mean [SD] age, 24.7 [3.8] years). At follow-up, 12 clinical high-risk individuals developed a first episode of psychosis whereas 74 clinical high-risk individuals did not; 19 clinical high-risk individuals showed good overall functioning (Global Assessment of Function ≥65), whereas 38 clinical high-risk individuals had a poor functional outcome (Global Assessment of Function <65). Compared with clinical high-risk individuals who did not become psychotic, clinical high-risk individuals who developed psychosis showed higher hippocampal glutamate levels (mean [SD], 8.33 [1.48] vs 9.16 [1.28] glutamate levels; P = .048). The clinical high-risk individuals who developed psychosis also had higher myo-inositol levels (mean [SD], 7.60 [1.23] vs 6.24 [1.36] myo-inositol levels; P = .002) and higher creatine levels (mean [SD], 8.18 [0.74] vs 7.32 [1.09] creatine levels; P = .01) compared with clinical high-risk individuals who did not become psychotic, and higher myo-inositol levels compared with healthy controls (mean [SD], 7.60 [1.23] vs 6.19 [1.51] myo-inositol levels; P = .005). Higher hippocampal glutamate levels in clinical high-risk individuals were also associated with a poor functional outcome (mean [SD], 8.83 [1.43] vs 7.76 [1.40] glutamate levels; P = .02). In the logistic regression analyses, hippocampal glutamate levels were significantly associated with clinical outcome in terms of transition and nontransition to psychosis (β = 0.48; odds ratio = 1.61; 95% CI, 1.00-2.59; P = .05) and overall functioning (β = 0.53; odds ratio = 1.71; 95% CI, 1.10-2.66; P = .02). Conclusions and Relevance: The findings indicate that adverse clinical outcomes in individuals at clinical high risk for psychosis may be associated with an increase in baseline hippocampal glutamate levels, as well as an increase in myo-inositol and creatine levels. This conclusion suggests that these measures could contribute to the stratification of clinical high-risk individuals according to future clinical outcomes

    Altered Relationship between Cortisol Response to Social Stress and Mediotemporal Function during Fear Processing in People at Clinical High Risk for Psychosis: A Preliminary Report

    Get PDF
    Evidence suggests that people at Clinical High Risk for Psychosis (CHR) have a blunted cortisol response to stress and altered mediotemporal activation during fear processing, which may be neuroendocrine–neuronal signatures of maladaptive threat responses. However, whether these facets are associated with each other and how this relationship is affected by cannabidiol treatment is unknown. We examined the relationship between cortisol response to social stress and mediotemporal function during fear processing in healthy people and in CHR patients. In exploratory analyses, we investigated whether treatment with cannabidiol in CHR individuals could normalise any putative alterations in cortisol-mediotemporal coupling. 33 CHR patients were randomised to 600 mg cannabidiol or placebo treatment. Healthy controls (n = 19) did not receive any drug. Mediotemporal function was assessed using a fearful face-processing functional magnetic resonance imaging paradigm. Serum cortisol and anxiety were measured immediately following the Trier Social Stress Test. The relationship between cortisol and mediotemporal blood-oxygen-level-dependent haemodynamic response was investigated using linear regression. In healthy controls, there was a significant negative relationship between cortisol and parahippocampal activation (p = 0.023), such that the higher the cortisol levels induced by social stress, the lower the parahippocampal activation (greater deactivation) during fear processing. This relationship differed significantly between the control and placebo groups (p = 0.033), but not between the placebo and cannabidiol groups (p = 0.67). Our preliminary findings suggest that the parahippocampal response to fear processing may be associated with the neuroendocrine (cortisol) response to experimentally induced social stress, and that this relationship may be altered in patients at clinical high risk for psychosis.</p

    The impact of cannabidiol treatment on resting state functional connectivity, prefrontal metabolite levels and reward processing in recent-onset patients with a psychotic disorder

    Get PDF
    The first clinical trials with cannabidiol (CBD) as treatment for psychotic disorders have shown its potential as an effective and well-tolerated antipsychotic agent. However, the neurobiological mechanisms underlying the antipsychotic profile of CBD are currently unclear. Here we investigated the impact of 28-day adjunctive CBD or placebo treatment (600 mg daily) on brain function and metabolism in 31 stable recent-onset psychosis patients (&lt;5 years after diagnosis). Before and after treatment, patients underwent a Magnetic Resonance Imaging (MRI) session including resting state functional MRI, proton Magnetic Resonance Spectroscopy (1H-MRS) and functional MRI during reward processing. Symptomatology and cognitive functioning were also assessed. CBD treatment significantly changed functional connectivity in the default mode network (DMN; time × treatment interaction p = 0.037), with increased connectivity in the CBD (from 0.59 ± 0.39 to 0.80 ± 0.32) and reduced connectivity in the placebo group (from 0.77 ± 0.37 to 0.62 ± 0.33). Although there were no significant treatment effects on prefrontal metabolite concentrations, we showed that decreased positive symptom severity over time was associated with both diminishing glutamate (p = 0.029) and N-acetyl-aspartate (NAA; neuronal integrity marker) levels (p = 0.019) in the CBD, but not the placebo group. CBD treatment did not have an impact on brain activity patterns during reward anticipation and receipt or functional connectivity in executive and salience networks. Our results show that adjunctive CBD treatment of recent-onset psychosis patients induced changes in DMN functional connectivity, but not prefrontal metabolite concentrations or brain activity during reward processing. These findings suggest that DMN connectivity alteration may be involved in the therapeutic effects of CBD.</p
    • …
    corecore